Publications by authors named "N Staten"

Human induced pluripotent stem cells (iPSCs) are ideal for developing personalized medicine. However, the spontaneous differentiation of human iPSCs under conventional 2D and 3D cultures results in significant heterogeneity and compromised quality. Therefore, a method for effectively isolating and expanding high-quality human iPSCs is critically needed.

View Article and Find Full Text PDF

Tracheitis secondary to placement of an endotracheal tube (ETT) is characterized by neutrophil accumulation in the tracheal lumen, which is generally associated with epithelial damage. Mitochondrial DNA (mtDNA), has been implicated in systemic inflammation and organ dysfunction following trauma; however, less is known about the effects of a foreign body on local trauma and tissue damage. We hypothesized that tracheal damage secondary to the ETT will result in local release of mtDNA at sufficient levels to induce TLR9 and NF-κB activation.

View Article and Find Full Text PDF

Objective: To examine correlations between blood levels of complement split product iC3b and serum component C3 with clinically meaningful changes in disease activity in patients with systemic lupus erythematosus (SLE).

Methods: A total of 159 consecutive patients with SLE, diagnosed according to the American College of Rheumatology or Systemic Lupus International Collaborating Clinics classification criteria, were enrolled in CASTLE (Complement Activation Signatures in Systemic Lupus Erythematosus), a prospective observational study. Patients with 1-7 study visits were included in this longitudinal analysis.

View Article and Find Full Text PDF

Bladder instrumentation engages the innate immune system via neutrophil activation, promoting inflammation and pain. Elevated levels of mitochondrial DNA (mtDNA) have been associated with tissue damage and organ dysfunction. We hypothesized that local bladder trauma induced by a Foley catheter (FC) will result in mtDNA release, migration of neutrophils into the bladder lumen, and activation of the Toll-like receptor 9 (TLR9) and nuclear factor kappa B (NF-κB) pathway leading to bladder tissue damage.

View Article and Find Full Text PDF

Complement is a major effector arm of the innate immune system that responds rapidly to pathogens or altered self. The central protein of the system, C3, participates in an amplification loop that can lead to rapid complement deposition on a target and, if excessive, can result in host tissue damage. Currently, complement activation is routinely monitored by assessing total C3 levels, which is an indirect and relatively insensitive method.

View Article and Find Full Text PDF