Publications by authors named "N Sparveris"

Article Synopsis
  • Measuring deeply virtual Compton scattering (DVCS) on the neutron is essential for understanding the nucleon's structure through generalized parton distributions (GPDs).
  • Neutron targets help complement data obtained from polarized protons, particularly in determining the poorly understood GPD E, which is crucial for analyzing quark contributions to nucleon spin.
  • The experiment utilized a longitudinally polarized electron beam at Jefferson Lab and the CLAS12 detector to measure DVCS on the neutron for the first time, providing new insights into quark-flavor separation of relevant Compton form factors.
View Article and Find Full Text PDF

The polarized cross-section ratio σ_{LT^{'}}/σ_{0} from hard exclusive π^{-}Δ^{++} electroproduction off an unpolarized hydrogen target has been extracted based on beam-spin asymmetry measurements using a 10.2  GeV/10.6  GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab.

View Article and Find Full Text PDF

Deeply virtual Compton scattering (DVCS) allows one to probe generalized parton distributions describing the 3D structure of the nucleon. We report the first measurement of the DVCS beam-spin asymmetry using the CLAS12 spectrometer with a 10.2 and 10.

View Article and Find Full Text PDF

We report results of Λ hyperon production in semi-inclusive deep-inelastic scattering off deuterium, carbon, iron, and lead targets obtained with the CLAS detector and the Continuous Electron Beam Accelerator Facility 5.014 GeV electron beam. These results represent the first measurements of the Λ multiplicity ratio and transverse momentum broadening as a function of the energy fraction (z) in the current and target fragmentation regions.

View Article and Find Full Text PDF

The proton is one of the main building blocks of all visible matter in the Universe. Among its intrinsic properties are its electric charge, mass and spin. These properties emerge from the complex dynamics of its fundamental constituents-quarks and gluons-described by the theory of quantum chromodynamics.

View Article and Find Full Text PDF