Aims: The identification of brain structures that are critical for upper limb residual motor function following stroke is an essential step towards the development of advanced treatment modalities for improving rehabilitation outcomes among brain-injured patients, such as non-invasive brain stimulation techniques, which aim to induce neuroplasticity in motor-critical brain regions. In the current study we attempted to identify the critical brain regions for upper limb motor function among stroke patients, using three different methods of lesion-symptom mapping (LSM).
Methods: Brain imaging data and Fugl-Meyer Assessment for upper-limb (FMA) scores for 107 patients admitted to the neurological rehabilitation department at Loewenstein Rehabilitation Medical Center, were analyzed using 3 LSM methods: Voxel-based Lesion-Symptom Mapping (VLSM), Region-based Lesion-Symptom Mapping (RLSM), and Multi-perturbation Shapley-value Analysis (MSA).
Purpose: The effectiveness of reactive responses to a sudden loss of balance is a critical factor that determines whether a fall will occur. We examined the strategies and kinematics associated with successful and unsuccessful balance recovery following lateral loss of balance in people with stroke (PwS).
Methods: Eleven PwS were included in the analysis.
Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered.
View Article and Find Full Text PDFPost-stroke motor recovery processes remain unknown. Timescales and patterns of upper-limb (UL) recovery suggest a major impact of biological factors, with modest contributions from rehabilitation. We assessed a novel impairment-based training motivated by motor control theory where reaching occurs within the spasticity-free elbow range.
View Article and Find Full Text PDFNumerous neuroimaging studies indicate that ventral parietal cortex (VPC), especially angular gyrus, plays an important role in episodic memory. However, the nature of the mnemonic processes supported by this region is far from clear. We previously found that stroke lesions in VPC and lateral temporal cortex caused deficits in cued recall of unimodal word pairs and picture pairs, and cross-modal picture-sound pairs, with larger deficits in the cross-modal task.
View Article and Find Full Text PDF