Background: Targeting inflammatory macrophages and their products is an effective method for controlling inflammation. The pyrazole analog of curcumin (curcumin pyrazole, PYR) has been reported to possess superior anti-inflammatory activity to curcumin (CUR). However, the role of PYR anti-inflammatory activity in macrophages has not yet been elucidated.
View Article and Find Full Text PDFVoriconazole is a new, potent broad-spectrum triazole systemic antifungal drug, a second-generation azole antifungal that is increasing in popularity, especially for the treatment of invasive aspergillosis and fluconazole-resistant invasive Candida infections. However, it is also known to induce hepatotoxicity clinically. The aim of this study was to investigate the hepatotoxicity and nephrotoxicity potential of voriconazole in vivo in rats.
View Article and Find Full Text PDFItraconazole and fluconazole have been reported to induce hepatotoxicity in patients. The present study was designed to investigate the role of cytochrome P450 inhibitors, SKF 525A, and curcumin pretreatment on the cytotoxicity of antifungal drugs fluconazole and itraconazole. For 3 consecutive days, female rats were administered daily SKF 525A or curcumin (5 and 25 mg/kg).
View Article and Find Full Text PDFItraconazole and fluconazole are potent wide spectrum antifungal drugs. Both of these drugs induce hepatotoxicity clinically. The mechanism underlying the hepatotoxicity is unknown.
View Article and Find Full Text PDFItraconazole and fluconazole are oral antifungal drugs, which have a wide spectrum antifungal activity and better efficacy than the older drugs. However, both drugs have been associated with hepatotoxicity in susceptible patients. The mechanism of antifungal drug-induced hepatotoxicity is largely unknown.
View Article and Find Full Text PDF