In pediatric cancer, structural variants (SVs) and copy-number alterations contribute to cancer initiation as well as progression, thereby aiding diagnosis and treatment stratification. Although suggested to be of importance, the prevalence and biological relevance of complex genomic rearrangements (CGRs) across pediatric solid tumors is largely unexplored. In a cohort of 120 primary tumors, we systematically characterized patterns of extrachromosomal DNA, chromoplexy, and chromothripsis across five pediatric solid cancer types.
View Article and Find Full Text PDFThe identification of causal BRCA1/2 pathogenic variants (PVs) in epithelial ovarian carcinoma (EOC) aids the selection of patients for genetic counselling and treatment decision-making. Current recommendations therefore stress sequencing of all EOCs, regardless of histotype. Although it is recognised that BRCA1/2 PVs cluster in high-grade serous ovarian carcinomas (HGSOC), this view is largely unsubstantiated by detailed analysis.
View Article and Find Full Text PDFLangerhans cell histiocytosis (LCH) is a rare neoplastic disorder caused by somatic genetic alterations in hematopoietic precursor cells differentiating into CD1a+/CD207+ histiocytes. LCH clinical manifestation is highly heterogeneous. BRAF and MAP2K1 mutations account for ∼80% of genetic driver alterations in neoplastic LCH cells.
View Article and Find Full Text PDFIntroduction: Since the approval of neurotrophic tropomyosin receptor kinase (NTRK) tyrosine kinase inhibitors for fist-line advanced stage pan-cancer therapy, pathologists and molecular biologists have been facing a complex question: how should the large volume of specimens be screened for NTRK fusions? Immunohistochemistry is fast and cheap, but the sensitivity compared to RNA NGS is unclear.
Methods: We performed RNA-based next-generation sequencing on 1,329 cases and stained 24 NTRK-rearranged cases immunohistochemically with pan-TRK (ERP17341). Additionally, we performed a meta-analysis of the literature.
Unlabelled: Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically.
View Article and Find Full Text PDF