Publications by authors named "N Siripoon"

Background: An effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7.

View Article and Find Full Text PDF

Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7.

View Article and Find Full Text PDF

Background: The 19-kDa C-terminal region of the merozoite surface protein-1 of the human malaria parasite Plasmodium falciparum (PfMSP-119) constitutes the major component on the surface of merozoites and is considered as one of the leading candidates for asexual blood stage vaccines. Because the protein exhibits a level of sequence variation that may compromise the effectiveness of a vaccine, the global sequence diversity of PfMSP-119 has been subjected to extensive research, especially in malaria endemic areas. In Thailand, PfMSP-119 sequences have been derived from a single parasite population in Tak province, located along the Thailand-Myanmar border, since 1995.

View Article and Find Full Text PDF

Objective: To compare the protein patterns from the extracts of the mutant clone T9/94-M1-1(b3) induced by pyrimethamine, and the original parent clone T9/94 following separation of parasite extracts by two-dimensional electrophoresis (2-DE).

Methods: Proteins were solubilized and separated according to their charges and sizes. The separated protein spots were then detected by silver staining and analyzed for protein density by the powerful image analysis software.

View Article and Find Full Text PDF

Two polymorphic marker genes, merozoite surface protein 3α (PvMSP3α) and merozoite surface protein 3β (PvMSP3β), from 100 Plasmodium vivax field isolates, were investigated using polymerase chain reaction and restriction fragment length polymorphism (PCR/RFLP). Genotyping of PvMSP3α and PvMSP3β revealed marked polymorphisms in length and sequence. Three major types of PvMSP3α (Type A, B and C) and two major types of PvMSP3β (Type A and B) were detected based on the length of PCR products.

View Article and Find Full Text PDF