Publications by authors named "N Sienna"

Objective: To characterize contemporary surgeons' viewpoints and perspectives on the academic mission during healthcare corporatization.

Summary Background Data: Academic surgery, traditionally driven by the tripartite missions of excellence in clinical care, scientific research, and education, faces increasing challenges from a corporatized healthcare environment. While previous studies have addressed the financial aspects of corporatization, a comprehensive evaluation of academic surgeons' attitudes and experiences remains lacking.

View Article and Find Full Text PDF

Incubation of rat L6 myoblasts for 24 h with 10(-7) M dexamethasone, a glucocorticoid analogue, resulted in a 2.5-fold increase in the rate of ribosomal protein L32 (rpL32) gene transcription with a corresponding increase in the level of rpL32 mRNA. The increased rate of transcription was accompanied by a dramatic enhancement in binding of the delta, but not beta and gamma, factors to the rpL32 gene promoter as measured by gel mobility shift assays.

View Article and Find Full Text PDF

To extend our understanding of the mechanisms regulating ribosome biosynthesis during changes in cellular growth rate, the expression and subcellular distribution of U3 snRNA and one of its associated proteins, fibrillarin, were examined in mouse 3T6 fibroblasts. Altering serum concentrations produces changes in the ribosome content of the cell as reflected by total RNA levels. When exponentially growing 3T6 cells are induced to become quiescent by serum starvation, a significant downshift in U3 snRNA gene transcription occurs in parallel to a decrease in pre-rRNA synthesis.

View Article and Find Full Text PDF

Differentiation of proliferating rat L6 myoblasts to syncytial multinucleated myotubes results in a significant downshift in the rate of U3 snRNA gene transcription, paralleling the decrease in rRNA synthesis previously documented. Coordinate production of U3 snRNA and rRNA during the differentiation process adds further support for a role of U3 snRNA in ribosome biogenesis. Despite the dramatic decrease in U3 snRNA transcription during differentiation, a corresponding drop in the cellular level of U3 snRNA does not occur.

View Article and Find Full Text PDF