A novel series of Zn--AB porphyrins and benzoporphyrins bearing phenyl and thiophene-based -substituents was successfully synthesized and characterized by spectroscopic and electrochemical techniques. Systematic comparison among the compounds in this series, together with the corresponding A analogs previously studied by our group, led to the understanding of the effects of π-conjugated system extension of a porphyrin core through β-fused rings, replacement of the phenyl with the thiophene-based -groups, and introduction of additional thiophene rings on thienyl substituents on photophysical and electrochemical properties. Oxidative electropolymerization through bithiophenyl units of both A and -AB analogs was achieved, resulting in porphyrin- and benzoporphyrin-oligothiophene conjugated polymers, which were characterized by cyclic voltammetry and absorption spectrophotometry.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) is a sensitive and fast technique for sensing applications such as chemical trace analysis. However, a successful, high-throughput practical implementation necessitates the availability of simple-to-use and economical SERS substrates. In this work, we present a robust, reproducible, flexible and yet cost-effective SERS substrate suited for the sensitive detection of analytes at near-infrared (NIR) excitation wavelengths.
View Article and Find Full Text PDFGreen hydrogen, by definition, must be produced with renewable energy sources without using fossil fuels. To transform the energy system, we need a fully sustainable production of green and renewable energy as well as the introduction of such "solar fuels" to tackle the chemical storage aspect of renewable energies. Conventional electrolysis of water splitting into oxygen and hydrogen gases is a clean and nonfossil method, but the use of massive noble-metal electrodes makes it expensive.
View Article and Find Full Text PDFThe development of ambient-air-processable organic-inorganic halide perovskite solar cells (OIHPSCs) is a challenge necessary for the transfer of laboratory-scale technology to large-scale and low-cost manufacturing of such devices. Different approaches like additives, antisolvents, composition engineering, and different deposition techniques have been employed to improve the morphology of the perovskite films. Additives that can form Lewis acid-base adducts are known to minimize extrinsic impacts that trigger defects in ambient air.
View Article and Find Full Text PDFWe demonstrate in this work the practical use of uniform mixtures of a bioresin shellac and four natural clays, i.e. montmorillonite, sepiolite, halloysite and vermiculate as dielectrics in organic field effect transistors (OFETs).
View Article and Find Full Text PDF