Ruminants can recycle nitrogen (N) and phosphorus (P), which are essential for vital body processes. Reduced N- and P-intake in ruminants is desirable for economic and ecologic reasons. Simultaneous modulation of mineral homoeostasis and bone metabolism occurs in young goats.
View Article and Find Full Text PDFIntroduction: The reduction of nitrogen (N) and phosphorus (P) in ruminant feed is desirable due to costs and negative environmental impact. Ruminants are able to utilize N and P through endogenous recycling, particularly in times of scarcity. When N and/or P were reduced, changes in mineral homeostasis associated with modulation of renal calcitriol metabolism occurred.
View Article and Find Full Text PDFFeeding approaches for ruminants are changing to reduce N excretion as a major source of pollution. Based on the ruminohepatic cycle of N, it was assumed that the metabolism of ruminants could tolerate a reduced-protein diet well. However, metabolic changes such as a reduction in hepatic IGF1 mRNA expression, resulting in lower blood IGF1 levels due to decreased hepatic growth hormone receptor (GHR) expression, were found.
View Article and Find Full Text PDFMammals respond to amino acid (AA) deficiency by initiating an AA response pathway (AAR) that involves the activation of general control nonderepressible 2 (GCN2), phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and activation of transcription factor 4 (ATF4). In this study, the effects of protein (N) and/or phosphorus (P) restriction on the GCN2/eIF2α/ATF4 pathway in the liver and the induction of fibroblast growth factor 21 (FGF21) in young goats were investigated. An N-reduced diet resulted in a decrease in circulating essential AA (EAA) and an increase in non-essential AA (NEAA), as well as an increase in hepatic mRNA expression of and and protein expression of GCN2.
View Article and Find Full Text PDFBMC Cancer
March 2023
Background: Germ cell tumors are relatively common in young men. They derive from a non-invasive precursor, called germ cell neoplasia in situ, but the exact pathogenesis is still unknown. Thus, further understanding provides the basis for diagnostics, prognostics and therapy and is therefore paramount.
View Article and Find Full Text PDF