Publications by authors named "N Sawhney"

The ternary blend approach accomplished improved spectral coverage and enhanced the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the role of the third component in improving the photovoltaic parameters needs critical analysis. Here, we introduced a wide band gap n-type twisted perylene diimide (TPDI) into the PM6:Y6 blend as a third component that improves spectral coverage and morphology, resulting in an overall increase in the efficiency of the OSCs.

View Article and Find Full Text PDF

Intramolecular singlet fission (iSF) facilitates single-molecule exciton multiplication, converting an excited singlet state to a pair of triplet states within a single molecule. A critical parameter in determining the feasibility of SF-enhanced photovoltaic designs is the triplet energy; many existing iSF materials have triplet energies too low for efficient transfer to silicon via a photon multiplier scheme. In this work, a series of six novel dimers based upon the high-triplet-energy, SF-active chromophore, 1,6-diphenyl-1,3,5-hexatriene (DPH) [(T) ∼ 1.

View Article and Find Full Text PDF

Singlet fission (SF) is a promising strategy to overcome thermalization losses and enhance the efficiency of single junction photovoltaics (PVs). The development of this field has been strongly material-limited, with a paucity of materials able to undergo SF. Rarer still are examples that can produce excitons of sufficient energy to be coupled to silicon PVs (>1.

View Article and Find Full Text PDF

We present quantitative ultrafast interferometric pump-probe microscopy capable of tracking of photoexcitations with sub-10 nm spatial precision in three dimensions with 15 fs temporal resolution, through retrieval of the full transient photoinduced complex refractive index. We use this methodology to study the spatiotemporal dynamics of the quantum coherent photophysical process of ultrafast singlet exciton fission. Measurements on microcrystalline pentacene films grown on glass (SiO) and boron nitride (hBN) reveal a 25 nm, 70 fs expansion of the joint-density-of-states along the crystal a,c-axes accompanied by a 6 nm, 115 fs change in the exciton density along the crystal b-axis.

View Article and Find Full Text PDF

Bioconversion of lignocellulosic resources offers an economically promising path to renewable energy. Technological challenges to achieving bioconversion include the development of cost-effective processes that render the cellulose and hemicellulose components of these resources to fermentable hexoses and pentoses. Natural bioprocessing of the hemicellulose fraction of lignocellulosic biomass requires depolymerization of methylglucuronoxylans.

View Article and Find Full Text PDF