Bacillus anthracis, a gram-positive bacillus capable of forming spores, causes anthrax in mammals, including humans, and is recognized as a potential biological weapon agent. The diagnosis of anthrax is challenging due to variable symptoms resulting from exposure and infection severity. Despite the availability of a licensed vaccines, their limited long-term efficacy underscores the inadequacy of current human anthrax vaccines, highlighting the urgent need for next-generation alternatives.
View Article and Find Full Text PDFBackground: Many women of childbearing age with inflammatory bowel disease (IBD) require advanced therapies. While biologics are largely low risk during pregnancy, the novel small molecules tofacitinib, filgotinib, upadacitinib and ozanimod (TFUO) have shown concerning teratogenic effects, and decreased fertility in animal studies. Therefore, their use in women of childbearing age needs careful consideration.
View Article and Find Full Text PDFAn electrochemical sensor was developed for the sensitive and selective detection of sulfadiazine (SDZ), based on a molecularly imprinted polymer (MIP) film formed on an indium tin oxide (ITO) electrode through a self-assembly process. The SDZ-imprinted ITO electrode (SDZ-MIP/APTES-ITO) was prepared through in situ polymerization using sulfadiazine, methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and 2,2'-azobisisobutyronitrile (AIBN) as the template, functional monomer, cross-linker, and initiator respectively. Before polymerization, the ITO electrode was functionalized with 3-aminopropyltriethoxysilane (APTES) to promote covalent attachment of the polymer to the electrode.
View Article and Find Full Text PDF