Complex formation between the human papilloma virus type 16 E7 protein (HPV-16 E7) and the retinoblastoma growth suppressor protein (RB) is believed to contribute to the process of cellular transformation that leads to cervical carcinoma. Genetic analysis of the HPV-16 E7 protein has shown that the segment of E7 homologous to the conserved region 2 of adenovirus 5 E1A protein is involved in both RB binding and E7-mediated cell transformation. We have previously shown that a peptide colinear with HPV-16 E7 residues 21-29 was able to block immobilized species of E7 from binding to RB protein.
View Article and Find Full Text PDFGastrin releasing peptide (GRP) is a 27 amino acid peptide hormone which is homologous to the amphibian peptide bombesin. Two series of novel GRP antagonists were developed by C-terminal modification of N-acetyl-GRP-20-27 amide. Peptide derivatives within each series resist enzymatic degradation in serum and exhibit strong affinity for the GRP receptor.
View Article and Find Full Text PDFSecondary 15N isotope effects at the N-1 position of 3-acetylpyridine adenine dinucleotide have been determined, by using the internal competition technique, for horse liver alcohol dehydrogenase (LADH) with cyclohexanol as a substrate and yeast formate dehydrogenase (FDH) with formate as a substrate. On the basis of less precise previous measurements of these 15N isotope effects, the nicotinamide ring of NAD has been suggested to adopt a boat conformation with carbonium ion character at C-4 during hydride transfer [Cook, P. F.
View Article and Find Full Text PDFThe kinetics of chloroperoxidase-catalyzed bromination and chlorination reactions were studied at various halide and hydrogen peroxide concentrations. At very high concentrations, both chloride (KI = 370 mM) and bromide (KI = 150 mM) are competitive substrate inhibitors versus hydrogen peroxide. Results at subinhibitory halide concentrations for bromination reactions (kcat = 4 ms-1, kcat/KPeroxide = 1.
View Article and Find Full Text PDFChloride ion (Cl-) effects on chloroperoxidase (CPO)-catalyzed peroxidation of catechol were used to probe the involvement of Cl- in CPO reactions. High concentrations of Cl- inhibit catechol peroxidation by competing with hydrogen peroxide (KI = 370 mM). However, at lower concentrations, Cl- is a linear competitive activator versus catechol (KDC = 35 mM).
View Article and Find Full Text PDF