Publications by authors named "N S Ramgir"

Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis. The disease takes a severe form in pregnant women, leading to around 30% mortality. Zinc is an essential micronutrient that plays a crucial role in multiple cellular processes.

View Article and Find Full Text PDF

Nanostructured tin oxide (SnO) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology.

View Article and Find Full Text PDF

The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples.

View Article and Find Full Text PDF

A new technique is reported for the transformation of smooth nonpolar ZnO nanowire surfaces to zigzagged high-index polar surfaces using polycrystalline ZnO thin films deposited by atomic layer deposition (ALD). The c-axis-oriented ZnO nanowires with smooth nonpolar surfaces are fabricated using vapor deposition method and subsequently coated by ALD with a ZnO particulate thin film. The synthesized ZnO-ZnO core-shell nanostructures are annealed at 800 °C to transform the smooth ZnO nanowires to zigzagged nanowires with high-index polar surfaces.

View Article and Find Full Text PDF

Nanowires are important potential candidates for the realization of the next generation of sensors. They offer many advantages such as high surface-to-volume ratios, Debye lengths comparable to the target molecule, minimum power consumption, and they can be relatively easily incorporated into microelectronic devices. Accordingly, there has been an intensified search for novel nanowire materials and corresponding platforms for realizing single-molecule detection with superior sensing performance.

View Article and Find Full Text PDF