Publications by authors named "N S P Bhuvanesh"

Lewis acids play a central role in a large variety of chemical transformations. The reactivity of the strongest Lewis acids is typically studied in the context of affinity towards hard bases, such as fluoride or oxygenous species. Carbocations can be viewed as soft Lewis acids, possessing significant affinity for softer bases, such as hydride.

View Article and Find Full Text PDF

The crystal structure of the title compound, [Ni(CHN)(NO)]NO, at room temperature, has monoclinic (2/) symmetry. The structure displays inter-molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site.

View Article and Find Full Text PDF

This work reports the synthesis of a bis(pyrrolylphosphino)phenyl borane (PBP)Ph () and its incorporation of Ir by metal insertion into B-Ph to afford the dipyrrolylboryl/bis(phosphine) pincer complex (PBP)Ir(Ph)Cl (). Hydrogenolysis of afforded (PBP)Ir(H)Cl (). Compound was converted into (PBP)IrCl () via reaction with -chlorosuccinimide, and exposure of to CO produced (PBP)IrCl(CO) ().

View Article and Find Full Text PDF

A novel series of D-bridge-A type organic small molecules has been designed, synthesized, and evaluated for non-volatile resistive switching write-once read-many (WORM) memory application. This study explores structure-property relationships by coupling electron-deficient malononitrile units with donors such as dibenzofuran, dibenzothiophene, and triphenylamine. Photophysical investigations revealed significant intramolecular charge transfer interaction, while electrochemical analyses demonstrated optimal band gaps ranging from 2.

View Article and Find Full Text PDF

The conventional synthetic approach to transition metal pincer complexes calls for the preparation of the tridentate pincer (pro)ligand first, with subsequent introduction of the transition metal center as the last step. This work demonstrates that the alternative synthetic logic, where the central main group element is introduced last, can be applicable to a number of PEP pincer complexes (E=B, Al, Si, P) derived from phosphinophenols and phosphinopyrroles. This approach obviates the need to isolate well-behaved propincer precursors, and instead relies on the formation of phosphine-metal adducts first, whose nature determines the stoichiometry of the needed main group reagent to complete the synthesis.

View Article and Find Full Text PDF