The Rurikids were the reigning house of Rus', its principalities and, ultimately the Tsardom of Russia, for seven centuries: from the IX to the end of the XVI century. According to the Primary Chronicle (the Tale of Bygone Years), the main chronicle of Rus', the Rurik dynasty was founded by the Varangian prince Rurik, invited to reign in Novgorod in 862, but still there is no direct genetic evidence of the origin of the early Rurikids. This research, for the first time, provides a genome-wide paleogenetic analysis of bone remains belonging to one of the Rurikids, Prince Dmitry Alexandrovich (?-1294), the son of the Grand Prince of Vladimir Alexander Yaroslavich Nevsky (1221-1263).
View Article and Find Full Text PDFIntroduction: The concept of Digital Twins (DTs) translated to drug development and clinical trials describes virtual representations of systems of various complexities, ranging from individual cells to entire humans, and enables in silico simulations and experiments. DTs increase the efficiency of drug discovery and development by digitalizing processes associated with high economic, ethical, or social burden. The impact is multifaceted: DT models sharpen disease understanding, support biomarker discovery and accelerate drug development, thus advancing precision medicine.
View Article and Find Full Text PDFThe Volga-Oka interfluve in northwestern Russia has an intriguing history of population influx and language shift during the Common Era. Today, most inhabitants of the region speak Russian, but until medieval times, northwestern Russia was inhabited by Uralic-speaking peoples. A gradual shift to Slavic languages started in the second half of the first millennium with the expansion of Slavic tribes, which led to the foundation of the Kievan Rus' state in the late 9 century CE.
View Article and Find Full Text PDFThe spectral quality of sunlight reaching plants remains a path for optimization in greenhouse cultivation. Quantum dots represent a novel, emission-tunable luminescent material for optimizing the sunlight spectrum in greenhouses with minimal intensity loss, ultimately enabling improved light use efficiency of plant growth without requiring electricity. In this study, greenhouse films containing CuInS/ZnS quantum dots were utilized to absorb and convert ultraviolet and blue photons from sunlight to a photoluminescent emission centered at 600 nm.
View Article and Find Full Text PDF