Aim: This study aimed to evaluate the impact of pterygium excision combined with autologous limbal stem cell transplantation on microvascular density, tear film stability, and corneal wound healing in the management of pterygium.
Methods: A retrospective analysis was conducted on 317 patients with pterygium who underwent treatment between January 2021 and January 2024. Patients were divided into a control group (pterygium excision alone, n = 161) and a study group (pterygium excision combined with autologous limbal stem cell transplantation, n = 156) based on the surgical approach.
The lung tumor microenvironment is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic, and immunosuppressive microenvironment that can augment the resistance of lung tumors to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3), and nuclear factor of κB (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy.
View Article and Find Full Text PDF2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharides (HMOs). 2'-FL exhibits great benefits for infant health, such as preventing infantile diarrhea and promoting the growth of intestinal probiotics. The microbial cell factory technique has shown promise for the massive production of 2'-FL.
View Article and Find Full Text PDFBackground: Infrared thermography technology is a diagnostic imaging modality that converts temperature information on the surface of the human body into visualised thermograms. This technology has the capacity to intuitively detect the presence of certain abnormal conditions or foci in the human body. In recent years, the application of this technology in medicine has become increasingly extensive, especially in the areas of auxiliary diagnosis and early screening of diseases.
View Article and Find Full Text PDFLaboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.
View Article and Find Full Text PDF