Despite extensive research, the features associated with the aging phenotype are not all-inclusive and need to be updated on a regular basis to incorporate new findings. We propose to include the dysfunction of membrane-less organelle (MLO) as a new aging hallmark. Special scaffold proteins with a high degree of intrinsic disorder drive the formation of MLOs via the liquid-liquid phase separation (LLPS) process.
View Article and Find Full Text PDFThe primary role of telomerase is the lengthening of telomeres. Nonetheless, emerging evidence highlights additional functions of telomerase outside of the nucleus. Specifically, its catalytic subunit, TERT (Telomerase Reverse Transcriptase), is detected in the cytosol and mitochondria.
View Article and Find Full Text PDFThe analysis of cryo-electron tomography images of human and rat mitochondria revealed that the mitochondrial matrix is at least as crowded as the cytosol. To mitigate the crowding effects, metabolite transport in the mitochondria primarily occurs through the intermembrane space, which is significantly less crowded. The scientific literature largely ignores how enzyme systems and metabolite transport are organized in the crowded environment of the mitochondrial matrix.
View Article and Find Full Text PDFMicrobial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology.
View Article and Find Full Text PDF