Determining the phenotypic effects of single nucleotide variants is critical for understanding the genome and interpreting clinical sequencing results. Base editors, including diversifying base editors that create C>N mutations, are potent tools for installing point mutations in mammalian genomes and studying their effect on cellular function. Numerous base editor options are available for such studies, but little information exists on how the composition of the editor (deaminase, recruitment method, and fusion architecture) affects editing.
View Article and Find Full Text PDF5'-end modifications play key roles in determining RNA fates. Phospho-methylation is a noncanonical cap occurring on either 5'-PPP or 5'-P ends. We used ChemRAP, in which affinity purification of cellular proteins with chemically synthesized modified RNAs is coupled to quantitative proteomics, to identify 5'-Pme "readers".
View Article and Find Full Text PDFMapping the functional human genome and impact of genetic variants is often limited to European-descendent population samples. To aid in overcoming this limitation, we measured gene expression using RNA sequencing in lymphoblastoid cell lines (LCLs) from 599 individuals from six African populations to identify novel transcripts including those not represented in the hg38 reference genome. We used whole genomes from the 1000 Genomes Project and 164 Maasai individuals to identify 8,881 expression and 6,949 splicing quantitative trait loci (eQTLs/sQTLs), and 2,611 structural variants associated with gene expression (SV-eQTLs).
View Article and Find Full Text PDFNoncoding variants of presumed regulatory function contribute to the heritability of neuropsychiatric disease. A total of 2,221 noncoding variants connected to risk for ten neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, bipolar disorder, borderline personality disorder, major depression, generalized anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder and schizophrenia, were studied in developing human neural cells. Integrating epigenomic and transcriptomic data with massively parallel reporter assays identified differentially-active single-nucleotide variants (daSNVs) in specific neural cell types.
View Article and Find Full Text PDFMassively parallel reporter assay (MPRA) is a high-throughput method that enables the study of the regulatory activities of tens of thousands of DNA oligonucleotides in a single experiment. While MPRA experiments have grown in popularity, their small sample sizes compared to the scale of the human genome limits our understanding of the regulatory effects they detect. To address this, we develop a deep learning model, MpraNet, to distinguish potential MPRA targets from the background genome.
View Article and Find Full Text PDF