Publications by authors named "N Roveri"

Biomineralization is the process by which living organisms generate organized mineral crystals. In human cells, this phenomenon culminates with the formation of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite. The mechanism that explains the genesis within the cell and the propagation of the mineral in the extracellular matrix still remains largely unexplained, and its characterization is highly controversial, especially in humans.

View Article and Find Full Text PDF

The study of the rolling tyre is a problem framed in the general context of nonlinear elasticity. The dynamics of the related phenomena is still an open topic, even though few examples and models of tyres can be found in the technical literature. The interest in the dissipation effects associated with the rolling motion is justified by their importance in fuel-saving and in the context of an eco-friendly design.

View Article and Find Full Text PDF

This paper presents an innovative electronically controlled suspension system installed on a real car and used as a test bench. The proposed setup relies on a sensor network that acquires a large real-time dataset collecting the car vibrations and the car trim and, through a new controller based on a recently proposed theory developed by the authors, makes use of adjustable semi-active magneto-rheological dampers. A BMW series 1 is equipped with such an integrated sensors-controller-actuators device and an extensive test campaign, in real driving conditions, is carried out to evaluate its performance.

View Article and Find Full Text PDF

Purpose: The use of bacteriophages represents a valid alternative to conventional antimicrobial treatments, overcoming the widespread bacterial antibiotic resistance phenomenon. In this work, we evaluated whether biomimetic hydroxyapatite (HA) nanocrystals are able to enhance some properties of bacteriophages. The final goal of this study was to demonstrate that biomimetic HA nanocrystals can be used for bacteriophage delivery in the context of bacterial infections, and contribute - at the same time - to enhance some of the biological properties of the same bacteriophages such as stability, preservation, antimicrobial activity, and so on.

View Article and Find Full Text PDF

To prevent soiling of marble exposed outdoors, the use of TiO₂ nano-particles has been proposed in the literature by two main routes, both raising durability issues: (i) direct application to marble surface, with the risk of particle leaching by rainfall; (ii) particle incorporation into inorganic or organic coatings, with the risk of organic coating degradation catalyzed by TiO₂ photoactivity. Here, we investigated the combination of nano-TiO₂ and hydroxyapatite (HAP), previously developed for marble protection against dissolution in rain and mechanical consolidation. HAP-TiO₂ combination was investigated by two routes: (i) sequential application of HAP followed by nano-TiO₂ ("H+T"); (ii) simultaneous application by introducing nano-TiO₂ into the phosphate solution used to form HAP ("HT").

View Article and Find Full Text PDF