Aims: Peat is used as a major ingredient of growing media in horticulture. Peat extracted from bogs can be acidic and low in nutrient availability and is therefore mixed with liming agents, nutrients, surfactants, perlite and so on. This study aims to estimate the rates at which raw peat and the modified peat ('growing media') decompose to release carbon dioxide (CO), to estimate the release of carbon (C) from liming agents and to estimate how peat biogeochemistry is changed.
View Article and Find Full Text PDFUnlabelled: Excess CO accumulated in soils is typically transported to the atmosphere through molecular diffusion along a concentration gradient. Because of the slow and constant nature of this process, a steady state between peat CO production and emissions is often established. However, in peatland ecosystems, high peat porosity could foster additional non-diffusive transport processes, whose dynamics may become important to peat CO storage, transport and emission.
View Article and Find Full Text PDFEricaceous shrubs adapt to the nutrient-poor conditions in ombrotrophic peatlands by forming symbiotic associations with ericoid mycorrhizal (ERM) fungi. Increased nutrient availability may diminish the role of ERM pathways in shrub nutrient uptake, consequently altering the biogeochemical cycling within bogs. To explore the significance of ERM fungi in ombrotrophic peatlands, we developed the model MWMmic (a peat cohort-based biogeochemical model) into MWMmic-NP by explicitly incorporating plant-soil nitrogen (N) and phosphorus (P) cycling and ERM fungi processes.
View Article and Find Full Text PDFSci Total Environ
February 2022
Peatlands store a large amount of organic carbon and are vulnerable to climate change and human disturbances. However, ecosystem-scale peatland models often do not explicitly simulate the decrease in peat substrate quality, i.e.
View Article and Find Full Text PDF