Leishmaniasis is a neglected tropical disease that is estimated to afflict over 12 million people. Current drugs for leishmaniasis suffer from serious deficiencies, including toxicity, high cost, modest efficacy, primarily parenteral delivery, and emergence of widespread resistance. We have discovered and developed a natural product-inspired tambjamine chemotype, known to be effective against spp, as a novel class of antileishmanial agents.
View Article and Find Full Text PDFThe development of novel antiplasmodial compounds with broad-spectrum activity against different stages of parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of in the low micromolar to nanomolar range.
View Article and Find Full Text PDFThe spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration-response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages.
View Article and Find Full Text PDFThe global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites.
View Article and Find Full Text PDFUtilizing a target repurposing and parasite-hopping approach, we tested a previously reported library of compounds that were active against , plus 31 new compounds, against a variety of protozoan parasites including , , and . This led to the discovery of several compounds with submicromolar activities and improved physicochemical properties that are early leads toward the development of chemotherapeutic agents against kinetoplastid diseases and malaria.
View Article and Find Full Text PDF