Publications by authors named "N Reynard"

Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based 'natural' flood management in the UK.

View Article and Find Full Text PDF

The possible effects of changing climate on a southern and a north-eastern English river (the Thames and the Yorkshire Ouse, respectively) were examined in relation to water and ecological quality throughout the food web. The CLASSIC hydrological model, driven by output from the Hadley Centre climate model (HadCM3), based on IPCC low and high CO(2) emission scenarios for 2080 were used as the basis for the analysis. Compared to current conditions, the CLASSIC model predicted lower flows for both rivers, in all seasons except winter.

View Article and Find Full Text PDF

The manner in which regulators apply environmental risk assessment to their decisions on managing risk is changing. Expectations of risk assessment work are becoming clearer, the social issues agenda is having an impact on risk assessment practice, and there is a trend toward harmonizing approaches to the treatment of environmental risk. For risk analysts, the multiplicity of environmental problems is providing opportunities for the transfer of expertise between the different contexts of applying environmental risk assessment.

View Article and Find Full Text PDF

A new semi-distributed integrated nitrogen in catchments (INCA) model was used to attempt to assess the potential impacts of several recent Hadley Centre climate change scenarios on the hydrological flow regime of the entire River Kennet catchment to Theale, south-central England, UK. The climatically and hydrologically anomalous period 1985-1995 was used for baseline data in an attempt to: (1) represent any possible future climatic or hydrological variability not available from scenario use alone; and (2) attain maximum possible model calibration validity under future climates by simulating extremes of within-year hydrological variability. Substantial reductions in total annual runoff occurred, with an average reduction of 18.

View Article and Find Full Text PDF