The comparative efficiency and beam characteristics of high-energy ions generated by high-intensity short-pulse lasers (approximately 1-6 x 10(19) W/cm2) from both the front and rear surfaces of thin metal foils have been measured under identical conditions. Using direct beam measurements and nuclear activation techniques, we find that rear-surface acceleration produces higher energy particles with smaller divergence and a higher efficiency than front-surface acceleration. Our observations are well reproduced by realistic particle-in-cell simulations, and we predict optimal criteria for future applications.
View Article and Find Full Text PDFThe laminarity of high-current multi-MeV proton beams produced by irradiating thin metallic foils with ultraintense lasers has been measured. For proton energies >10 MeV, the transverse and longitudinal emittance are, respectively, <0.004 mm mrad and <10(-4) eV s, i.
View Article and Find Full Text PDF