Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change.
View Article and Find Full Text PDFThe marine-based West Antarctic Ice Sheet (WAIS) is considered vulnerable to irreversible collapse under future climate trajectories, and its tipping point may lie within the mitigated warming scenarios of 1.5° to 2°C of the United Nations Paris Agreement. Knowledge of ice loss during similarly warm past climates could resolve this uncertainty, including the Last Interglacial when global sea levels were 5 to 10 meters higher than today and global average temperatures were 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Millennial-scale ice sheet variability (1-15 kyr periods) is well documented in the Quaternary, providing insight into critical atmosphere-ocean-cryosphere interactions that can inform the mechanism and pace of future climate change. Ice sheet variability at similar frequencies is comparatively less known and understood prior to the Quaternary during times, where higher atmospheric CO and warmer climates prevailed, and continental-scale ice sheets were largely restricted to Antarctica. In this study, we evaluate a high-resolution clast abundance dataset (ice-rafted debris) that captures East Antarctic ice sheet variability in the western Ross Sea during the early Miocene.
View Article and Find Full Text PDFChanges in global mean sea level are a clear indicator of a warming climate, but local factors including land subsidence or uplift, cause changes in relative sea level that drive shoreline shifts. These local changes and their impact on coastal hazards matter to coastal communities. NZ SeaRise produced relative sea level projections for Aotearoa to include the latest global climate and Antarctic Ice Sheet research and estimates of vertical land movement at high spatial resolution.
View Article and Find Full Text PDFEmerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly.
View Article and Find Full Text PDF