Background: Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative disease that leads to irreversible damage to the brain and spinal cord. The goal of so-called "immune reconstitution therapies" (IRTs) is to achieve long-term disease remission by eliminating a pathogenic immune repertoire through intense short-term immune cell depletion. B cells are major targets for effective immunotherapy in MS.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system to which a genetic predisposition contributes. Over 200 genetic regions have been associated with increased disease risk, but the disease-causing variants and their functional impact at the molecular level are mostly poorly defined. We hypothesized that single-nucleotide polymorphisms (SNPs) have an impact on pre-mRNA splicing in MS.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system with a well-established genetic contribution to susceptibility. Over 200 genetic regions have been linked to the inherited risk of developing MS, but the disease-causing variants and their functional effects at the molecular level are still largely unresolved. We hypothesised that MS-associated single-nucleotide polymorphisms (SNPs) affect the recognition and enzymatic cleavage of primary microRNAs (pri-miRNAs).
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
October 2021
Multiple sclerosis (MS) is a debilitating disease of the central nervous systems (CNS). Disease-modifying treatments (including immunosuppressive treatments) have shown positive effects on the disease course, but are associated with systemic consequences on the immune system and may increase the risk of infections and alter vaccine efficiency. Therefore, vaccination of MS patients is of major interest.
View Article and Find Full Text PDF