Publications by authors named "N R Belton"

Automated Motion Artefact Detection (MAD) in Magnetic Resonance Imaging (MRI) is a field of study that aims to automatically flag motion artefacts in order to prevent the requirement for a repeat scan. In this paper, we identify and tackle the three current challenges in the field of automated MAD; (1) reliance on fully-supervised training, meaning they require specific examples of Motion Artefacts (MA), (2) inconsistent use of benchmark datasets across different works and use of private datasets for testing and training of newly proposed MAD techniques and (3) a lack of sufficiently large datasets for MRI MAD. To address these challenges, we demonstrate how MAs can be identified by formulating the problem as an unsupervised Anomaly Detection (AD) task.

View Article and Find Full Text PDF

Radiology artificial intelligence (AI) projects involve the integration of integrating numerous medical devices, wireless technologies, data warehouses, and social networks. While cybersecurity threats are not new to healthcare, their prevalence has increased with the rise of AI research for applications in radiology, making them one of the major healthcare risks of 2021. Radiologists have extensive experience with the interpretation of medical imaging data but radiologists may not have the required level of awareness or training related to AI-specific cybersecurity concerns.

View Article and Find Full Text PDF

Bioactive glasses have been used for bone regeneration applications thanks to their excellent osteoconductivity, an osteostimulatory effect, and high degradation rate, releasing biologically active ions. Besides these properties, mesoporous bioactive glasses (MBG) are specific for their highly ordered mesoporous channel structure and high specific surface area, making them suitable for drug and growth factor delivery. In the present study, calcium (Ca) (15 mol%) in MBG was partially and fully substituted with zinc (Zn), known for its osteogenic and antimicrobial properties.

View Article and Find Full Text PDF

The association between low birth weight and high blood pressure is well established, but underlying mechanisms remain undefined. Vascular rarefaction, which may elevate peripheral vascular resistance, has been observed in capillaries of young men at risk for hypertension and men who had low birth weight. We looked for evidence that capillary rarefaction explains the association of low birth weight with high blood pressure in two cohorts.

View Article and Find Full Text PDF