The Fermi surface that characterizes the electronic band structure of crystalline solids can be difficult to image experimentally in a way that reveals local variations. We show that Fermi surfaces can be imaged in real space with a low-temperature scanning tunneling microscope when subsurface point scatterers are present: in this case, cobalt impurities under a copper surface. Even the very simple Fermi surface of copper causes strongly anisotropic propagation characteristics of bulk electrons that are confined in beamlike paths on the nanoscale.
View Article and Find Full Text PDFGold contacts on n-type GaAs(110) have been investigated using scanning tunneling microscopy and spectroscopy in cross-sectional configuration. In spatially resolved current voltage spectroscopy the Schottky barrier potential is visible. We find signatures of delocalized gap states at the interface decaying into the semiconductor and observe a defect density at the interface below 3 x 10(13) cm(-2).
View Article and Find Full Text PDF