Publications by authors named "N Pouvesle"

The interaction of H(2)O(2) with ice surfaces at temperatures between 203 and 233 K was investigated using a low pressure, coated-wall flow tube equipped with a chemical ionisation/electron impact mass spectrometer. Equilibrium surface coverages of H(2)O(2) on ice were measured at various concentrations and temperatures to derive Langmuir-type adsorption isotherms. H(2)O(2) was found to be strongly partitioned to the ice surface at low temperatures, with a partition coefficient, K(linC), equal to 2.

View Article and Find Full Text PDF

The physical adsorption of formic (HC(O)OH) and acetic (CH(3)C(O)OH) acid on ice was measured as a function of concentration and temperature. At low concentrations, the gas-ice interaction could be analysed by applying Langmuir adsorption isotherms to determine temperature dependent partition constants, K(Lang). Using temperature independent saturation coverages (N(max)) of (2.

View Article and Find Full Text PDF

The mechanism of the gas-phase OH-initiated oxidation of glycolaldehyde (HOCH(2)CHO) was studied in the 233-296 K temperature range using a turbulent flow reactor coupled with a chemical ionization mass spectrometer. In the presence of O2, formaldehyde, CO2, formic acid, and glyoxal were observed at room temperature with the yields of 80, 34, 18, and 14%, respectively. Decrease of temperature to 233 K led to significant changes in the yields of the stable products: those of formaldehyde and glyoxal decreased to 50 and 4%, respectively, whereas that of formic acid increased to 52%.

View Article and Find Full Text PDF

A high-pressure turbulent flow reactor coupled with a chemical ionization mass spectrometer was used to investigate the minor channel (1b) producing nitric acid, HNO3, in the HO2 + NO reaction for which only one channel (1a) is known so far: HO2 + NO --> OH + NO2 (1a), HO2 + NO --> HNO3 (1b). The reaction has been investigated in the temperature range 223-298 K at a pressure of 200 Torr of N2 carrier gas. The influence of water vapor has been studied at 298 K.

View Article and Find Full Text PDF

The mechanism of the gas-phase reaction of OH radicals with hydroxyacetone (CH3C(O)CH2OH) was studied at 200 Torr over the temperature range 236-298 K in a turbulent flow reactor coupled to a chemical ionization mass-spectrometer. The product yields and kinetics were measured in the presence of O2 to simulate the atmospheric conditions. The major stable product at all temperatures is methylglyoxal.

View Article and Find Full Text PDF