Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2024
Quantum anomalous Hall insulators are topologically characterized by non-zero integer Chern numbers, the sign of which depends on the direction of the exchange field that breaks time-reversal symmetry. This feature allows the manipulation of the conducting chiral edge states present at the interface of two magnetic domains with opposite magnetization and opposite Chern numbers. Motivated by this broad understanding, the present study investigates the quantum transport properties of a magnetizedBi2Se3topological insulator nanoribbon with a domain wall (DW) oriented either parallel or perpendicular to the transport direction.
View Article and Find Full Text PDFRegarding the spin field effect transistor (spin FET) challenges such as mismatch effect in spin injection and insufficient spin life time, we propose a silicene based device which can be a promising candidate to overcome some of those problems. Using non-equilibrium Green's function method, we investigate the spin-dependent conductance in a zigzag silicene nanoribbon connected to two magnetized leads which are supposed to be either in parallel or anti-parallel configurations. For both configurations, a controllable spin current can be obtained when the Rashba effect is present; thus, we can have a spin filter device.
View Article and Find Full Text PDF