Publications by authors named "N Ponon"

Electrical neurostimulation is effective in the treatment of neurological disorders, but associated recording artefacts generally limit its applications to open-loop stimuli. Real-time and continuous closed-loop control of brain activity can, however, be achieved by pairing concurrent electrical recordings and optogenetics. Here we show that closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates.

View Article and Find Full Text PDF

This paper introduces a new hybrid microfabrication technique which combines ultra-precision micro-milling and a ductile sacrificial material deposition process to fabricate a silicon-based implant for neuroprosthetics applications with near defect-free quality at several hundreds of micrometres in thickness. The sacrificial materials can influence the quality of silicon during machining. The cutting mechanism and feasibility of the hybrid technique are studied by molecular dynamics (MD) simulations and experiments.

View Article and Find Full Text PDF

Background: One of the major concerns in implantable optoelectronics is the heat generated by emitters such as light emitting diodes (LEDs). Such devices typically produce more heat than light, whereas medical regulations state that the surface temperature change of medical implants must stay below + 2 °C. The LED's reverse current can be employed as a temperature-sensitive parameter to measure the temperature change at the implant's surface, and thus, monitor temperature rises.

View Article and Find Full Text PDF

Implantable photonic probes are of increasing interest to the field of biophotonics and in particular, optogenetic neural stimulation. Active probes with onboard light emissive elements allow for electronic multiplexing and can be manufactured through existing microelectronics methods. However, as the optogenetics field moves towards clinical practice, an important question arises as to whether such probes will cause excessive thermal heating of the surrounding tissue.

View Article and Find Full Text PDF

Objective: This work presents a method to determine the surface temperature of microphotonic medical implants like LEDs. Our inventive step is to use the photonic emitter (LED) employed in an implantable device as its own sensor and develop readout circuitry to accurately determine the surface temperature of the device.

Approach: There are two primary classes of applications where microphotonics could be used in implantable devices; opto-electrophysiology and fluorescence sensing.

View Article and Find Full Text PDF