Publications by authors named "N Plundrich"

Background: Esophagitis with eosinophilia, inflammation, and fibrosis represent a chronic condition in humans with food allergies.

Objective: In this investigation, we asked whether esophagitis with an eosinophilic component is observed in young pigs rendered allergic to hen egg white protein (HEWP).

Methods: Food allergy was induced in young pigs using two protocols.

View Article and Find Full Text PDF

Peanut allergy is usually lifelong and accidental exposure impose formidable risk. The aim of this study was to assess the capacity of peanut proteins complexed to polyphenol extracts to reduce allergic response in C3H/HeJ mice. Mice were sensitized to peanut flour followed by exposure to amino acid diets fortified with peanut protein-polyphenol aggregates of either with low (15%; w/w) or high (40%; w/w) complexation ratios of blueberry (BB-Low and BB-High) and cranberry (CB-Low and CB-High) extracts.

View Article and Find Full Text PDF

The potential for 42 different polyphenols found in Vaccinium fruits to bind to peanut allergen Ara h 2 and inhibit IgE binding epitopes was investigated using cheminformatics techniques. Out of 12 predicted binders, delphinidin-3-glucoside, cyanidin-3-glucoside, procyanidin C1, and chlorogenic acid were further evaluated in vitro. Circular dichroism, UV-Vis spectroscopy, and immunoblotting determined their capacity to (i) bind to Ara h 2, (ii) induce protein secondary structural changes, and (iii) inhibit IgE binding epitopes.

View Article and Find Full Text PDF

This study investigates the anti-allergic properties of peanut skin polyphenols (PSP)-enriched peanut (PN) protein aggregates. PSP was blended with PN flour at concentrations of 5, 10, 15, 30, and 40% (w/w). Rat basophil leukemia cells (RBL-2H3) were sensitized with either anti-DNP-IgE or PN-allergic plasma followed by co-exposure to unmodified PN flour (control) or PSP-PN protein aggregates and Ca ionophore, ionomycin.

View Article and Find Full Text PDF

Healthy foods like polyphenol-rich berries and high quality edible proteins are in demand in today's functional food marketplace, but it can be difficult to formulate convenient food products with physiologically-relevant amounts of these ingredients and still maintain product quality. In part, this is because proteins can interact with other food ingredients and precipitate destabilizing events, which can disrupt food structure and diminish shelf life. Proteins in foods can also interact with human receptors to provoke adverse consequences such as allergies.

View Article and Find Full Text PDF