Purpose: To evaluate the effectiveness of abdominal compression (AC) as a respiratory motion management method for the heart and stomach during stereotactic arrhythmia radioablation (STAR).
Methods: 4D computed tomography (4DCT) scans of patients imaged with AC or without AC (free-breathing: FB) were obtained from ventricular-tachycardia (VT) (n = 3), lung cancer (n = 18), and liver cancer (n = 18) patients. Patients treated for VT were imaged both FB and with AC.
Automated Stereotactic Radiosurgery (SRS) planning solutions improve clinical efficiency and reduce treatment plan variability. Available commercial solutions employ a template-based strategy that may not be optimal for all SRS patients. This study compares a novel beam angle optimized Volumetric Modulated Arc Therapy (VMAT) planning solution for multi-metastatic SRS to the commercial solution HyperArc.
View Article and Find Full Text PDFBackground: Metastatic complications are a major cause of cancer-related morbidity, with up to 40% of cancer patients experiencing at least one brain metastasis. Earlier detection may significantly improve patient outcomes and overall survival. We investigated machine learning (ML) models for early detection of brain metastases based on diffusion weighted imaging (DWI) radiomics.
View Article and Find Full Text PDFCranial irradiation is part of the standard of care for treating pediatric brain tumors. However, ionizing radiation can trigger serious long-term neurologic sequelae, including oligodendrocyte and brain white matter loss enabling neurocognitive decline in children surviving brain cancer. Oxidative stress-mediated oligodendrocyte precursor cell (OPC) radiosensitivity has been proposed as a possible explanation for this.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
January 2022
Background And Purpose: Linac-based stereotactic radiosurgery (SRS) planning for multi-metastatic cases is a complex and intensive process. A manual planning strategy starts with a template-based set of beam angles and applies modifications though a trial and error process. Beam angle optimization uses patient specific geometric heuristics to determine beam angles that provide optimal target coverage and avoid treating through Organs-at-Risk (OARs).
View Article and Find Full Text PDF