Publications by authors named "N Plobeck"

The evaluation of a series of bicyclic aminoimidazoles as potent BACE-1 inhibitors is described. The crystal structures of compounds 14 and 23 in complex with BACE-1 reveal hydrogen bond interactions with the protein important for achieving potent inhibition. The optimization of permeability and efflux properties of the compounds is discussed as well as the importance of these properties for attaining in vivo brain efficacy.

View Article and Find Full Text PDF

The design and synthesis of a new series of c-Jun N-terminal kinase-3 (JNK3) inhibitors with selectivity against JNK1 are reported. The novel series of substituted 2'-anilino-4,4'-bipyridines were designed based on a combination of hits from high throughput screening and X-ray crystal structure information of compounds crystallized into the JNK3 ATP binding active site.

View Article and Find Full Text PDF

The design, synthesis, and pharmacological evaluation of a novel class of delta opioid receptor agonists, N, N-diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide (6a) and its analogues, are described. These compounds, formally derived from SNC-80 (2) by replacing the piperazine ring with a piperidine ring containing an exocyclic carbon carbon double bond, were found to bind with high affinity and exhibit excellent selectivity for the delta opioid receptor as full agonists. 6a, the simplest structure in the class, exhibited an IC(50) = 0.

View Article and Find Full Text PDF

Nonpeptide delta opioid agonists are analgesics with a potentially improved side-effect and abuse liability profile, compared to classical opioids. Andrews analysis of the NIH nonpeptide lead SNC-80 suggested the removal of substituents not predicted to contribute to binding. This approach led to a simplified lead, N, N-diethyl-4-[phenyl(1-piperazinyl)methyl]benzamide (1), which retained potent binding affinity and selectivity to the human delta receptor (IC(50) = 11 nM, mu/delta = 740, kappa/delta > 900) and potency as a full agonist (EC(50) = 36 nM) but had a markedly reduced molecular weight, only one chiral center, and increased in vitro metabolic stability.

View Article and Find Full Text PDF