Skeletal syndromes are among the most common birth defects. Vertebrate skeletogenesis involves two major cell types: cartilage-forming chondrocytes and bone-forming osteoblasts. In vitro, both are under the control of retinoic acid (RA), but its exact in vivo effects remained elusive.
View Article and Find Full Text PDFThe Trithorax group (TrxG) is composed of diverse, evolutionary conserved proteins that form chromatin-associated complexes accounting for epigenetic transcriptional memory. However, the molecular mechanisms by which particular loci are marked for reactivation after mitosis are only partially understood. Here, based on genetic analyses in zebrafish, we identify the multidomain protein Brpf1 as a novel TrxG member with a central role during development.
View Article and Find Full Text PDFThe transcriptional regulator RERE/Atrophin-2 (RERE) is required for the normal patterning of the early vertebrate embryo, including the central nervous system, pharyngeal arches, and limbs. Consistent with a role as a transcriptional corepressor, RERE binds histone deacetylase 1 and 2 (HDAC1/2), and orphan nuclear receptors such as Tlx. Here, we identify the zebrafish babyface (bab) as a mutant in rerea and show that it interacts genetically with fibroblast growth factor 8 (fgf8).
View Article and Find Full Text PDFCell culture work has identified the tumor suppressor p53 as a component of the S-phase checkpoint control system, while in vivo studies of this role of p53 in whole-vertebrate systems were limited. Here, we describe zebrafish mutants in the DNA polymerase delta catalytic subunit 1, based on the positional cloning of the flathead (fla) gene. fla mutants display specific defects in late proliferative zones, such as eyes, brain and cartilaginous elements of the visceral head skeleton, where cells display compromised DNA replication, followed by apoptosis, and partial or complete loss of affected tissues.
View Article and Find Full Text PDFAndersen-Tawil syndrome is a skeletal and cardiac muscle disease with developmental features caused by mutations in the inward rectifier K+ channel gene KCNJ2. Patients harboring these mutations exhibit extremely variable expressivities. To explore whether these mutations can be correlated with a specific patient phenotype, we expressed both wild-type (WT) and mutant genes cloned into a bi-cistronic vector.
View Article and Find Full Text PDF