Publications by authors named "N Petryk"

Before each cell division, eukaryotic cells must replicate their chromosomes to ensure the accurate transmission of genetic information. Chromosome replication involves more than just DNA duplication; it also includes chromatin assembly, inheritance of epigenetic marks, and faithful resumption of all genomic functions after replication. Recent progress in quantitative technologies has revolutionized our understanding of the complexity and dynamics of DNA replication forks at both molecular and genomic scales.

View Article and Find Full Text PDF

Polyurethane foams present a tunable biomaterial platform with potential for use in a range of regenerative medicine applications. Achieving a balance between scaffold degradation rates and tissue ingrowth is vital for successful wound healing, and significant in vivo testing is required to understand these processes. Vigorous in vitro testing can minimize the number of animals that are required to gather reliable data; however, it is difficult to accurately select in vitro degradation conditions that can effectively mimic in vivo results.

View Article and Find Full Text PDF
Article Synopsis
  • Studying genome replication in mammalian cells has been difficult, but the new method called Okazaki fragment sequencing (OK-seq) helps identify where replication starts and ends in the human genome.
  • OK-seq measures the orientations of replication forks and provides detailed experimental methods for its application in human and yeast cells, along with bioinformatics for analyzing the data.
  • This method not only details the genome replication process but also aids in understanding genome stability, epigenome maintenance, and evolution, with experiments completable in about six days.
View Article and Find Full Text PDF

Mutational signatures defined by single base substitution (SBS) patterns in cancer have elucidated potential mutagenic processes that contribute to malignancy. Two prevalent mutational patterns in human cancers are attributed to the APOBEC3 cytidine deaminase enzymes. Among the seven human APOBEC3 proteins, APOBEC3A is a potent deaminase and proposed driver of cancer mutagenesis.

View Article and Find Full Text PDF

The ability to easily and safety tune pore structures of gas-blown polyurethane shape memory polymer (SMP) foams could improve their outcomes as hemostatic dressings or tissue engineering scaffolds and enable overall commercialization efforts. Incorporating physical blowing agents into the polymer mix can be used to tune pore size and interconnectivity without altering foam chemistry. Enovate (HFC-254fa) is a commonly used physical blowing agent in gas-blown foams, but the Environmental Protection Agency (EPA) considers its use unacceptable because it is a hydrofluorocarbon that contributes to global warming.

View Article and Find Full Text PDF