Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have revolutionized genome editing, significantly advancing the improvement of cultivated crop species. This review provides an overview of genome-edited crops that have either reached the market or received the necessary approvals but are not yet available to consumers. We analyze various genome-editing studies to understand the distribution of different genome-editing systems, the types of site-directed nucleases employed, and the geographical spread of these studies, with a specific focus on global and European contexts.
View Article and Find Full Text PDFBackground: Radical surgery for esophageal cancer requires macroscopic and microscopic clearance of all malignant tissue. A critical element of the procedure is achieving a negative circumferential margin (CRM) to minimize local recurrence. The utility of minimally invasive surgery poses challenges in replicating techniques developed in open surgery, particularly for hiatal dissection in esophago-gastrectomy.
View Article and Find Full Text PDFIntroduction: Recent advances in Artificial Intelligence (AI) and Computer Vision (CV) have led to automated pose estimation algorithms using simple 2D videos. This has created the potential to perform kinematic measurements without the need for specialized, and often expensive, equipment. Even though there's a growing body of literature on the development and validation of such algorithms for practical use, they haven't been adopted by health professionals.
View Article and Find Full Text PDFCompared with notifiable disease surveillance, claims-based algorithms estimate higher Lyme disease incidence, but their accuracy is unknown. We applied a previously developed Lyme disease algorithm (diagnosis code plus antimicrobial drug prescription dispensing within 30 days) to an administrative claims database in Massachusetts, USA, to identify a Lyme disease cohort during July 2000-June 2019. Clinicians reviewed and adjudicated medical charts from a cohort subset by using national surveillance case definitions.
View Article and Find Full Text PDFThis paper presents a systematic review of a key sector of the much promising and rapidly evolving field of biomedical engineering, specifically on the fabrication of three-dimensional open, porous collagen-based medical devices, using the prominent freeze-drying process. Collagen and its derivatives are the most popular biopolymers in this field, as they constitute the main components of the extracellular matrix, and therefore exhibit desirable properties, such as biocompatibility and biodegradability, for in vivo applications. For this reason, freeze-dried collagen-based sponges with a wide variety of attributes can be produced and have already led to a wide range of successful commercial medical devices, chiefly for dental, orthopedic, hemostatic, and neuronal applications.
View Article and Find Full Text PDF