The application of low-density polyethylene (LDPE) has been confined to packaging applications due to its inadequate mechanical and tribological characteristics. We propose enhancing LDPE by integrating hard carbon spheres (CSs) to improve its strength, frictional characteristics, and wear resistance. LDPE/CS composites were created by blending LDPE with varying CS amounts (0.
View Article and Find Full Text PDFPhysical characteristics of solid tumors such as dense internal microarchitectures and pathological stiffness influence cancer progression and treatment. While it is routine to engineer culture substrates and scaffolds with elastic moduli that approximate tumors, these models often fail to capture characteristic internal microarchitectures such as densely compacted concentric ECM fibers at the stromal interface. Contractile mesenchymal cells can solve this engineering challenge by deforming, contracting, and compacting extracellular matrix (ECM) hydrogels to decrease tissue volume and increase tissue density.
View Article and Find Full Text PDFHypothesis: Carbon microspheres have been shown to reduce friction and surface wear at relatively low speeds and high applied loads (i.e., within the boundary lubrication regime).
View Article and Find Full Text PDFHypothesis: Contact angle and sliding angle measurements are widely used to characterize superhydrophobic surfaces because of the simplicity and accessibility of the technique. We hypothesize that dynamic friction measurements, with increasing pre-loads, between a water drop and a superhydrophobic surface is more accurate because this technique is less influenced by local surface inhomogeneities and temporal surface changes.
Experiments: A water drop, held by a ring probe which is connected to a dual-axis force sensor, is sheared against a superhydrophobic surface while maintaining a constant preload.
Low-density polyethylene (LDPE) films are widely used in packaging, insulation and many other commodity applications due to their excellent mechanical and chemical properties. However, the water-wetting and water-repellant properties of these films are insufficient for certain applications. In this study, bare LDPE and textured LDPE (T-LDPE) films were subjected to low-pressure plasmas, such as carbon tetrafluoride (CF) and hydrogen (H), to see the effect of plasma treatment on the wetting properties of LDPE films.
View Article and Find Full Text PDF