In Josephson diodes the asymmetry between positive and negative current branch of the current-phase relation leads to a polarity-dependent critical current and Josephson inductance. The supercurrent nonreciprocity can be described as a consequence of the anomalous Josephson effect -a φ-shift of the current-phase relation- in multichannel ballistic junctions with strong spin-orbit interaction. In this work, we simultaneously investigate φ-shift and supercurrent diode efficiency on the same Josephson junction by means of a superconducting quantum interferometer.
View Article and Find Full Text PDFWe present a comprehensive investigation of the Berezinskii-Kosterlitz-Thouless transition in ultrathin strongly disordered NbN films. Measurements of resistance, current-voltage characteristics, and kinetic inductance on the very same device reveal a consistent picture of a sharp unbinding transition of vortex-antivortex pairs that fit standard renormalization group theory without extra assumptions in terms of inhomogeneity. Our experiments demonstrate that the previously observed broadening of the transition is not an intrinsic feature of strongly disordered superconductors and provide a clean starting point for the study of dynamical effects at the Berezinskii-Kosterlitz-Thouless transition.
View Article and Find Full Text PDFThe recent discovery of the intrinsic supercurrent diode effect, and its prompt observation in a rich variety of systems, has shown that non-reciprocal supercurrents naturally emerge when both space-inversion and time-inversion symmetries are broken. In Josephson junctions, non-reciprocal supercurrent can be conveniently described in terms of spin-split Andreev states. Here we demonstrate a sign reversal of the Josephson inductance magnetochiral anisotropy, a manifestation of the supercurrent diode effect.
View Article and Find Full Text PDFNonreciprocal transport refers to charge transfer processes that are sensitive to the bias polarity. Until recently, nonreciprocal transport was studied only in dissipative systems, where the nonreciprocal quantity is the resistance. Recent experiments have, however, demonstrated nonreciprocal supercurrent leading to the observation of a supercurrent diode effect in Rashba superconductors.
View Article and Find Full Text PDFSimultaneous breaking of inversion- and time-reversal symmetry in Josephson junction (JJ) leads to a possible violation of the() = -(-) equality for the current-phase relation. This is known as anomalous Josephson effect and it produces a phase shiftin sinusoidal current-phase relations. In ballistic JJs with non-sinusoidal current phase relation the observed phenomenology is much richer, including the supercurrent diode effect and the magnetochiral anisotropy (MCA) of Josephson inductance.
View Article and Find Full Text PDF