Near-infrared photoimmunotherapy (NIR-PIT) is a new and promising cancer therapy based on a monoclonal antibody conjugated to a photosensitizer which is activated by near-infrared light irradiation, causing cell death. We investigated NIR-PIT using a small protein mimetic (6-7 kDa), Affibody molecules, instead of a monoclonal antibody for HER2-overexpressing cancer. Because of its small size, the Affibody has rapid clearance, high imaging contrast, and good tumor penetration.
View Article and Find Full Text PDFA series of bis(4-pentylpyridinium) compounds with a variety of spacers between the pyridinium headgroups was synthesised, and the antifungal activity of these compounds was investigated. Lengthening the alkyl spacer between the pentylpyridinium headgroups from 12 to 16 methylene units resulted in increased antifungal activity against C. neoformans and C.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2016
'Structurally nanoengineered antimicrobial peptide polymers' (SNAPPs), in the form of star-shaped peptide polymer nanoparticles, have been recently demonstrated as a new class of antimicrobial agents with superior in vitro and in vivo efficacy against Gram-negative pathogens, including multidrug-resistant species. Herein, we present a detailed bionano interaction study on SNAPPs by assessing their antimicrobial activities against several Gram-negative bacteria in complex biological matrices. Simulated body fluid and animal serum were used as test media to reveal factors that influence the antimicrobial efficacy of SNAPPs.
View Article and Find Full Text PDFWith the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy.
View Article and Find Full Text PDFWe describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E.
View Article and Find Full Text PDF