J Colloid Interface Sci
January 2003
The thermal stability of purple membranes is studied by electric light scattering. Information on the polarization mechanisms is obtained. Incomplete recovery of the initial electric state (i.
View Article and Find Full Text PDFThe effects of glycyl-glycine and bis-trispropane buffers on the light-excited electric signals due to proton motion in the molecule were studied for the bacteriorhodopsin (bR) mutants D38R, D96N, E204Q, R227Q, D85N, D85T, R82Q/D85N, and D85N/D96N in purple membranes and for delipidated purple membrane containing the wild-type bR. The results show additional charge motion caused by the buffers in all cases. Arrhenius parameters calculated from the temperature dependence of the difference signals (with buffer minus without buffer) are similar to the parameters found for the wild-type bR in the case of these buffers: the values of the activation enthalpies are mostly in the range 25-50 kJ/mol; all the activation entropies are negative.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2001
Buffer-induced alteration of the purple membrane electric dipole moments and electrokinetic charge was studied by electric light scattering and microelectrophoresis. The permanent dipole moment and electrophoretic mobility of purple membranes change in opposite direction in presence of 'P'- and 'N'-type buffer molecules, shown to produce 'positive' and 'negative' additional components to the bR light-induced charge displacement current. It is concluded that the two types buffer molecules distribute differently on the membrane surfaces, depending on their protonation state, as a result of different interaction with the membrane cytoplasmic and extracellular surfaces.
View Article and Find Full Text PDFZ Naturforsch C J Biosci
September 2000
Temperature-induced changes in protein intrinsic fluorescence of native, delipidated and deionized purple membranes are investigated. It is found that the removal of cations most strongly affects the protein and its thermal stability. The denaturation of dei-BR completes at 70 degrees C, while delipidated and native BR still maintain their native structure at this temperature.
View Article and Find Full Text PDF