Aquatic and palustrine plants are a group of plants that have morphological and anatomical adaptations to occupy permanent or temporary aquatic environments. In this study, we carried out the first floristic survey of aquatic and palustrine plants in restingas (restinga swamps and swamp forests) of a Ramsar site in the municipality of Guimarães, western coast of Maranhão State and easternmost Amazon, Brazil. In total, 52 species of 43 genera and 28 families were collected between July 2022 and October 2023, during the dry and rainy seasons.
View Article and Find Full Text PDFStem cells are capable of self-renewal and differentiation into various specialized cells, making them a potential therapeutic option in regenerative medicine. This study establishes a comprehensive methodology for isolating, culturing, and characterizing rat hair follicle stem cells. Hair follicles were harvested from Sprague-Dawley rats and subjected to two different isolation techniques.
View Article and Find Full Text PDFNervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.
View Article and Find Full Text PDFAims: The development and selection of T cells occur within the thymus. This organ involutes throughout life, compromising the generation of T cells and, consequently, the efficacy of the immune system. Mesenchymal stem cells (MSC) have beneficial effects on the immune system.
View Article and Find Full Text PDFACS Appl Electron Mater
December 2024
Electronics based on natural or degradable materials are a key requirement for next-generation devices, where sustainability, biodegradability, and resource efficiency are essential. In this context, optimizing the molecular chemical structure of organic semiconductor compounds (OSCs) used as active layers is crucial for enhancing the efficiency of these devices, making them competitive with conventional electronics. In this work, honey-gated organic field-effect transistors (HGOFETs) were fabricated using four different perylene derivative films as OSCs, and the impact of the chemical structure of these perylene derivatives on the performance of HGOFETs was investigated.
View Article and Find Full Text PDF