NKG2D is a central activating receptor involved in target recognition and killing by Natural Killer and CD8 T cells. The known role of NKG2D is to recognize a family of self-induced stress ligands that are upregulated on stressed cells such as cancerous or virally infected cells. Fungal pathogens are a major threat to human health, infecting more than a billion patients yearly and becoming more common and drug resistant.
View Article and Find Full Text PDFis the leading cause of severe mold infections in immunocompromised patients. This common fungus possesses innate attributes that allow it to evade the immune system, including its ability to survive the high copper (Cu) levels in phagosomes. Our previous work has revealed that under high Cu levels, the transcription factor AceA is activated, inducing the expression of the copper exporter CrpA to expel excess Cu.
View Article and Find Full Text PDFis a common human fungal pathogen that can cause a range of diseases. Triazoles are used to treat infections, but resistance is increasing due to mutations in genes such as , and overexpression of efflux pumps. Verifying the importance of these mutations is time-consuming, and although the use of CRISPR-Cas9 methods has shortened this process, it still relies on the construction of repair templates containing a selectable marker.
View Article and Find Full Text PDFThe opportunistic fungus is the primary invasive mold pathogen in humans, and is responsible for an estimated 200,000 yearly deaths worldwide. Most fatalities occur in immunocompromised patients who lack the cellular and humoral defenses necessary to halt the pathogen's advance, primarily in the lungs. One of the cellular responses used by macrophages to counteract fungal infection is the accumulation of high phagolysosomal Cu levels to destroy ingested pathogens.
View Article and Find Full Text PDF