Publications by authors named "N Oram"

Intensively managed grasslands are large sources of the potent greenhouse gas nitrous oxide (NO) and important regulators of methane (CH) consumption and production. The predicted increase in flooding frequency and severity due to climate change could increase NO emissions and shift grasslands from a net CH sink to a source. Therefore, effective management strategies are critical for mitigating greenhouse gas emissions from flood-prone grasslands.

View Article and Find Full Text PDF

Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we simultaneously assessed the effects of three pathways-root litter quality, soil biota, and soil abiotic conditions-on the relationships between plant diversity (in terms of species richness and the presence/absence of grasses and legumes) and root decomposition using structural equation modeling.

View Article and Find Full Text PDF

Heating aldehydes that contain a protected hydroxymethyl group, a tethered alkyl chloride and a tethered alkenyl group at the α-position of the aldehyde with an amine sets up a cascade (tandem) reaction sequence involving condensation to an intermediate imine, then cyclization and formation of an intermediate azomethine ylide and then intramolecular dipolar cycloaddition. The fused tricyclic products are formed with complete or very high stereochemical control. The hydroxymethyl group was converted into an aldehyde - which could be removed to give the tricyclic amine products that are unsubstituted at the ring junction positions - or was converted into an alkene, which allowed the formation of the core ring system of the alkaloids scandine and meloscine.

View Article and Find Full Text PDF

A tandem one-pot reaction of an aldehyde with a primary amine involving condensation and then cyclization (N-alkylation), followed by intramolecular dipolar cycloaddition of the resulting nitrone or azomethine ylide, provides a synthesis of bridged tricyclic amines. The reaction was most successful using hydroxylamine, and when the dipolarophile was an unsaturated ester, subsequent reduction of the N-O bond and cyclization to the lactam provided the core ring system of the yuzurimine, daphnilactone B, and bukittinggine type Daphniphyllum alkaloids.

View Article and Find Full Text PDF

Condensation of an aldehyde with an α-amino-ester, followed by a tandem process involving cyclization to a seven-membered ring, deprotonation to an intermediate azomethine ylide and intramolecular dipolar cycloaddition gave tricyclic products related to stenine and neostenine.

View Article and Find Full Text PDF