We studied phase separation in the single-crystalline antiferromagnetic superconductor Rb(2)Fe(4)Se(5) (RFS) using a combination of scattering-type scanning near-field optical microscopy and low-energy muon spin rotation (LE-μSR). We demonstrate that the antiferromagnetic and superconducting phases segregate into nanometer-thick layers perpendicular to the iron-selenide planes, while the characteristic in-plane size of the metallic domains reaches 10 μm. By means of LE-μSR we further show that in a 40-nm thick surface layer the ordered antiferromagnetic moment is drastically reduced, while the volume fraction of the paramagnetic phase is significantly enhanced over its bulk value.
View Article and Find Full Text PDFFourier-transform infrared (FTIR) spectroscopy is a widely used analytical tool for chemical identification of inorganic, organic and biomedical materials, as well as for exploring conduction phenomena. Because of the diffraction limit, however, conventional FTIR cannot be applied for nanoscale imaging. Here we demonstrate a novel FTIR system that allows for infrared-spectroscopic nanoimaging of dielectric properties (nano-FTIR).
View Article and Find Full Text PDFWe demonstrate that mid-infrared surface phonon polariton excitation, propagation and interference can be studied by scattering-type near-field optical microscopy (s-SNOM). In our experiments we image surface phonon polaritons (SPPs) propagating on flat SiC crystals. They are excited by weakly focused illumination of single or closely spaced metal disks we fabricated on the SiC surface by conventional photolithography.
View Article and Find Full Text PDFWe study the optical material contrast of single nanoparticles in infrared scattering-type near-field optical microscopy (IR s-SNOM) in the presence of strong probe-substrate coupling. It is shown theoretically and experimentally that the contrast depends on both the dielectric properties of the nanoparticles and on their size. We can separate the two dependencies by correlating the simultaneously acquired topography and near-field images pixel-by-pixel.
View Article and Find Full Text PDFNanometer-scale mapping of complex optical constants by scattering-type near-field microscopy has been suffering from quantitative discrepancies between the theory and experiments. To resolve this problem, a novel analytical model is presented here. The comparison with experimental data demonstrates that the model quantitatively reproduces approach curves on a Au surface and yields an unprecedented agreement with amplitude and phase spectra recorded on a phonon-polariton resonant SiC sample.
View Article and Find Full Text PDF