Publications by authors named "N O Barioni"

Cholinergic signaling is essential to mediate the auditory prepulse inhibition (PPI), an operational measure of sensorimotor gating, that refers to the reduction of the acoustic startle reflex (ASR) when a low-intensity, non-startling acoustic stimulus (the prepulse) is presented just before the onset of the acoustic startle stimulus. The cochlear root neurons (CRNs) are the first cells of the ASR circuit to receive cholinergic inputs from non-olivocochlear neurons of the ventral nucleus of the trapezoid body (VNTB) and subsequently decrease their neuronal activity in response to auditory prepulses. Yet, the contribution of the VNTB-CRNs pathway to the mediation of PPI has not been fully elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • As blood oxygen levels drop (hypoxemia), mammals adjust their breathing and heart functions to supply oxygen to critical organs, primarily using carotid bodies as sensors.
  • New research highlights that spinal thoracic sympathetic preganglionic neurons act as additional oxygen sensors, responding to low oxygen levels and influencing respiratory and cardiovascular activity even when traditional sensors are absent.
  • These spinal oxygen sensors utilize a specific mechanism involving neuronal nitric oxide synthase 1 (NOS1) and NADPH oxidase (NOX), which plays a crucial role in managing the body's response to low oxygen situations and could have implications for various health conditions and crises.
View Article and Find Full Text PDF

Twenty-five years ago, a new physiological preparation called the working heart-brainstem preparation (WHBP) was introduced with the claim it would provide a new platform allowing studies not possible before in cardiovascular, neuroendocrine, autonomic and respiratory research. Herein, we review some of the progress made with the WHBP, some advantages and disadvantages along with potential future applications, and provide photographs and technical drawings of all the customised equipment used for the preparation. Using mice or rats, the WHBP is an in situ experimental model that is perfused via an extracorporeal circuit benefitting from unprecedented surgical access, mechanical stability of the brain for whole cell recording and an uncompromised use of pharmacological agents akin to in vitro approaches.

View Article and Find Full Text PDF

The autonomic nervous system maintains homeostasis of cardiovascular, respiratory, gastrointestinal, urinary, immune, and thermoregulatory function. Homeostasis involves a variety of feedback mechanisms involving peripheral afferents, many of which contain molecular receptors sensitive to mechanical deformation, termed mechanosensors. Here, we focus on the molecular identity of mechanosensors involved in the baroreflex control of the cardiovascular system.

View Article and Find Full Text PDF