Light-mediated processes have received significant attention, since they have re-surfaced unconventional reactivity platforms, complementary to conventional polar chemistry. γ-Lactones and cyclopropanes are prevalent moieties, found in numerous natural products and pharmaceuticals. Among various methods for their synthesis, light-mediated protocols are coming to the spotlight, although these are contingent upon the use of photoorgano- or metal-based catalysts.
View Article and Find Full Text PDFIntroduction: The immunological response to the SARS-CoV-2 virus and the treatment of COVID-19 disease present a potential susceptibility to viral reactivation, particularly Herpes simplex virus-1 (HSV-1).
Case Presentation: A 49-year-old female presented to hospital with severe COVID-19 pneumonitis and was given sarilumab and dexamethasone. She was intubated and ventilated in the intensive care unit (ICU) and initially demonstrated biochemical and clinical evidence of improvement.
Objective: This study attempted to test the effectiveness of an enhanced analysis of the 20-30 ms complex of somatosensory evoked potentials, in predicting the short-term outcome of comatose survivors of out of hospital cardiac arrest and compare it with the current clinical practice.
Methods: Single-centre, prospective, observational study. Median nerve SSEP recording performed at 24-36 h post-return of spontaneous circulation.
The niche field of photochemistry offers opportunities that are not found in "traditional" ground state chemical pathways. Aminochlorinated derivatives are an interesting family of 1,2-difunctionalised compounds that provide access to a variety of natural products and pharmaceutical active substances. A practical, catalyst-free chloroamination protocol is described herein, providing access to intermediates of great importance, utilising mild and photochemical reaction conditions (370 nm), where N-chlorosulfonamides are used as both nitrogen and chlorine sources.
View Article and Find Full Text PDFThe hydroacylation of dialkyl azodicarboxylates has received a lot of attention lately due to the great importance of acyl hydrazides in organic chemistry. Herein, we report an inexpensive and green photochemical approach, where light irradiation (390 nm) significantly accelerates the reaction between dialkyl azodicarboxylates and aldehydes, while water is employed as the solvent. A variety of aromatic and aliphatic aldehydes were converted into their corresponding acyl hydrazides in good to excellent yields in really short reaction times (15-210 min) and the reaction mechanism was also studied.
View Article and Find Full Text PDF