Lagrangians of the state-averaged multiconfigurational self-consistent field (SA-MCSCF) and multistate extended second-order quasidegenerate perturbation theory (MS-XMCQDPT2) coupled with the reference interaction site model self-consistent field constraint spatial electron density are defined. In addition, variational equations were derived to calculate the excitation energies of the target molecules dissolved in various solvents. The theory was applied to a phenol molecule in various solutions, and the gradients and Hessian matrices were calculated to evaluate the absorption spectral lines, including the broadening bandwidth.
View Article and Find Full Text PDFWe quantified and subsequently analyzed bandwidth of ultraviolet and visible photoabsorption spectral lines in solution by applying time-dependent first-order perturbation theory using the Born-Oppenheimer adiabatic potential calculated using the multistate extended-multi-configurational quasi-degenerated second-order perturbation theory (MS-XMCQDPT2) coupled with the reference interaction site model self-consistent field spatial electron density distribution (RISM-SCF-cSED). The proposed method was implemented for 2-thiocytosine in solution, and solvatochromism of the bandwidth of the ππ* transition was clearly observed. The standard deviation of a characteristic electronic excitation was decomposed into the contributions of the characteristic vibrational mode of 2-thiocytosine.
View Article and Find Full Text PDFWe developed a high-speed filterless airflow multistage photocatalytic elbow aerosol removal system for the treatment of bioaerosols such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human-generated bioaerosols that diffuse into indoor spaces are 1-10 μm in size, and their selective and rapid treatment can reduce the risk of SARS-CoV-2 infection. A high-speed airflow is necessary to treat large volumes of indoor air over a short period.
View Article and Find Full Text PDF