Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments.
View Article and Find Full Text PDFObjectives: It is unknown when inosine was first employed as a renoprotective agent in the context of kidney transplantation procedures. However, there is no clinical evidence to support a protective role of inosine. The aim of this study was to investigate the effect of inosine on graft recovery.
View Article and Find Full Text PDFTo investigate the effects of the combined addition of and sucrose on the fermentation weight loss (FWL), fermentation quality, and microbial community structure of ensiled rape straw under varying packing density conditions. After harvesting, the rapeseed straw was collected, cut into 1-2 cm pieces, and sprayed with sterile water to adjust the moisture content to 60%. The straw was then divided into two groups: one treated with additives (1 × 10 CFU/g fresh material of and 10 kg/t fresh material of sucrose), and the other sprayed with an equivalent amount of sterile water as the control (CK).
View Article and Find Full Text PDFBackground: Sweet sorghum is used mainly as an energy crop and feed crop in arid and semiarid regions, and ensiling is a satisfactory method for preserving high-quality sweet sorghum. The aim of this study was to reveal the dynamics of the fermentation quality, bacterial communities, and fermentation weight loss (FWL) of sweet sorghum silage during fermentation.
Methods: Sweet sorghum was harvested at the first inflorescence spikelet stage and ensiled without (CK) or with lactic acid bacterial (LAB) additives (L).
Visible-light photooxidation sensitized by surface attachment of small colorless organics on semiconductor photocatalysts has emerged as an economical method for photocatalytic synthesis or degradation. In particular, heteroatom (X = N and Cl)-containing substrates could undergo either C-N coupling or dechlorination degradation sensitizing TiO, but the mechanism in conducting the competitive visible-light sensitized photooxidations is still vague. Herein, the visible-light photooxidation of colorless 4-chlorobenzene-1,2-diamine (-CAN) on TiO was revealed, contributing to selective C-N coupling rather than dechlorination.
View Article and Find Full Text PDF