Oncolytic virotherapy is a promising approach for cancer treatment. However, when introduced into the body, the virus provokes the production of virus-neutralizing antibodies, which can reduce its antitumor effect. To shield viruses from the immune system, aptamers that can cover the membrane of the viral particle are used.
View Article and Find Full Text PDFVirotherapy is one of the perspective technologies in the treatment of malignant neoplasms. Previously, we have developed oncolytic vaccinia virus VV-GMCSF-Lact and its high cytotoxic activity and antitumor efficacy against glioma was shown. In this work, using immortalized and patient-derived cells with different sensitivity to VV-GMCSF-Lact, we evaluated the cytotoxic effect of chemotherapy agents.
View Article and Find Full Text PDFSocial jet lag (SJL) is a misalignment between sleep and wake times on workdays and free days. SJL leads to chronic circadian rhythm disruption and may affect nearly 70% of the general population, leading to increased risk for cardiometabolic diseases. This study investigated the effects of SJL on metabolic health, exercise performance, and exercise-induced skeletal muscle adaptations in mice.
View Article and Find Full Text PDFGlioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms.
View Article and Find Full Text PDFOncolytic virotherapy is a rapidly evolving approach that aims to selectively kill cancer cells. We designed a promising recombinant vaccinia virus, VV-GMCSF-Lact, for the treatment of solid tumors, including glioma. We assessed how VV-GMCSF-Lact affects human cells using immortalized and patient-derived glioma cultures and a non-malignant brain cell culture.
View Article and Find Full Text PDF