Publications by authors named "N N Lukzen"

Determining the stability constant of the complex formed by an organic ligand with a protein is the first stage in the screening of new drugs. Nuclear spin long-lived states, in particular the singlet state, can be used to study the reversible binding of ligands to proteins. In a complex with a protein, the spins of the ligand interact with the spins of the protein, the system of protein and ligand nuclei can relax by a dipole-dipole mechanism, and the lifetime of the singlet state is strongly reduced.

View Article and Find Full Text PDF

A series of triads, consisting of a triarylamine electron donor and a perylene diimide electron acceptor which were attached to two different wings of a triptycene bridging unit, was investigated concerning the dynamics of photoinduced charge separation and charge recombination processes with a particular focus on the involved spin-chemical aspects. Attaching electron-donating or electron-withdrawing substituents to the third wing of the triptycene bridge allowed tuning the electron transfer processes. These processes were investigated fs-transient absorption spectroscopy and ns-transient absorption spectroscopy in an external magnetic field.

View Article and Find Full Text PDF

Volatile metabolites can be lost during the preanalytical stage of metabolomic analysis. This work is aimed at the experimental and theoretical study of mechanisms of volatile substance evaporation and retention in the residues during the drying of extract solutions. We demonstrate that solvent evaporation leads to the unavoidable loss of nondissociating volatile metabolites with low boiling points and high vapor pressures (such as acetone and ethanol).

View Article and Find Full Text PDF

The use of parahydrogen - the isomer of molecular hydrogen with zero nuclear spin - is important for promising and actively developing methods for spin hyperpolarization of nuclei called parahydrogen induced polarization (PHIP). However, the dissolved parahydrogen in PHIP experiments quickly loses its spin order, resulting in the formation of orthohydrogen and reduction of the overall nuclear polarization of the substrate. This process is due to the difference of chemical shifts of hydride protons, as well as spin-spin couplings between nuclei, in the intermediate catalytic complexes, and it has not been rigorously explained so far.

View Article and Find Full Text PDF

Stretched electron-donor-bridge-acceptor triads that exhibit intramolecular twisting degrees of freedom are capable of modulating exchange interaction () as well as electronic couplings through variable π-overlap at the linear bond links, affecting the rate constants of photoinduced charge separation and recombination. Here we present an in-depth investigation of such effects induced by methyl substituents leading to controlled steric hindrance of intramolecular twisting around biaryl axes. Starting from the parent structure, consisting of a triphenyl amine donor, a triptycene (TTC) bridge and a phenylene-perylene diimide acceptor (Me0), one of the two phenylene linkers attached to the TTC was -substituted by two methyl groups (Me2, Me3), or both such phenylene linkers by two pairs of methyl groups (Me23).

View Article and Find Full Text PDF